VLSI Technology

Assignment 2

Part 1: Multiple choice questions – tick the correct answer(s)

- 1. After ion-implantation, the region of maximum damage is
 - (a) At the surface (x = 0)
 - (b) At the point of peak doping concentration $(x = R_p)$
 - (c) Between surface and the point of peak doping concentration $(0 < x < R_p)$
 - (d) Beyond the point of peak doping concentration $(x > R_p)$
- 2. The common p-type dopant in silicon is/are
 - (a) Boron
 - (b) Boron and Gallium
 - (c) Gallium
 - (d) Boron, Gallium and Aluminium
- 3. Assuming constant diffusivity, the doping profile for an infinite source diffusion process can be approximated as
 - (a) Gaussian
 - (b) Exponential
 - (c) Erfc
 - (d) Pearson IV
- 4. The damage in the ion-implanted sample is primarily due to
 - (a) Electronic stopping
 - (b) Nuclear stopping
 - (c) A combination of electronic and nuclear stopping
 - (d) None of the above
- 5. State which of the following statements is/are true
 - (a) Positive photoresist softens on exposure to UV light
 - (b) Positive photoresist hardens on exposure to UV light
 - (c) Negative photoresist softens on exposure to UV light
 - (d) Negative photoresist hardens on exposure to UV light

Part 2 : Fill in the blanks

- 1. The two main advantages of e-beam lithography over optical lithography are
- 2. Arsenic is preferred over phosphorus as a dopant for emitter because it does not exhibit
- 3. The different roles played by the three different constituent components during the etching of silicon in HNA (nitric acid, hydrofluoric acid and acetic acid) solution are:

HNO3
HF
CH₃COOH

4. As CIF₃ is added to Cl₂ during dry etching of undoped silicon, the etch profile becomes progressively

Part 3: Numerical Problems

- 1. Phosphorus is diffused at 1150°C into a uniformly doped p-silicon substrate with acceptor concentration of $N_A = 10^{16}/\text{cm}^3$. Given that the solid solubility and the diffusion co-efficient of phosphorus in silicon at 1150°C is $10^{20}/\text{cm}^3$ and $10^{-12}\text{cm}^2/\text{s}$ respectively,
 - (a) Calculate the total number of phosphorus atoms/area in silicon after a predeposition time of 1 hour.
 - (b) If after this step, drive-in is carried out for 2 hours at the same temperature, what will be the final junction depth and
 - (c) the surface concentration?
- 2. Phosphorus is implanted into a uniformly doped p-silicon substrate with acceptor concentration of $N_A = 10^{16}/\text{cm}^3$. If the beam current density is 2 μ A/cm² and the implantation is carried out for 10 minutes,
 - (a) Calculate the implantation dose
 - (b) Find the peak doping concentration assuming R_{p} = 1.1 μm and ΔR_{p} = 0.3 μm
 - (c) Find the surface doping concentration

Self study: Compare the results in problems 1 and 2. What do you think is a major advantage of ionimplantation?